Humanizing the Mouse

March 20, 2015

By Medical Discovery News

Humanizing the Mouse

In the 1986 horror movie “The Fly,” a scientist’s teleportation experiment goes awry when a fly lands in one of the teleportation pods and he undergoes a transformation into a part fly, part human monster. Today, science has given us the capability to create animal-human hybrids, although so far none of them has craved human flesh like they tend to do in the movies.

Neuroscientists at the Massachusetts Institute of Technology (MIT) have been introducing human genes into mice to study the effects on mouse brain function and capabilities. They are doing this in small steps, using genetic engineering techniques to introduce a specific, single human gene into a mouse. This will allow scientists to evaluate the impact of each human gene on the brain in another species. It’s not quite a monstrous Franken-mouse, but the results have definitely been revealing.

The human version of gene Fox2p is connected with language and speech development, a trait associated with the higher order brain function unique to humans. When this gene was introduced into mice in the experiment, they developed more complex neurons and more extensive circuits in their brains. Scientists wondered if this gene is responsible for the enhanced brain and cognitive abilities displayed in humans.

In the behavioral experiments at MIT, scientists placed mice in a maze and evaluated the reactions of mice harboring the Fox2p gene versus normal mice. The maze offered two modes of navigation to the mice: visual clues in the environment that were observable from within the maze and tactile clues in the pathways of the maze consisting of smooth or textured floor.

The hybrid mice learned to navigate the maze quickly, finishing it three times faster than normal mice. This cognitive enhancement or flexibility reflects the human capability of handling and processing information. The tactile information is handled by something called procedural or unconscious learning. However, the sight-derived clues represent declarative learning. It is the addition of the Fox2p gene that gave mice the ability to integrate both forms of learning.

Interestingly, if the visual clues or the tactile clues were removed, the hybrid mice did no better than the normal mice at navigating the maze. This might mean that the hybrid mice only performed better when they could utilize both forms of information. This ability to switch between and consider different forms of memory (procedural and declarative) is important and may explain in part why it is so important in human speech and language development.

Humanized animals are being used in a number of scientific fields to help us understand different elements of human physiology. Expect to see more of the humanization of animals in the future, but alas for you Sci-Fi fans – a Frankenmouse is not yet on the horizon.

For a link to this story, click here.

%d bloggers like this: