Artificial Blood

Nov. 7, 2014

By Medical Discovery News

Red blood cells

In the series “True Blood,” the invention of artificial blood allows vampires to live among humans without inciting fear. In the real world, however, artificial blood would have very different effects, as 85 million units of blood are donated worldwide and there is always a demand for more. An artificial blood substitute free of infectious agents that could be stored at room temperature and used on anyone regardless of blood type would be revolutionary.

That is exactly what a group of scientists at the University of Essex in England are working on, although the search for an artificial blood substitute started 80 years ago. All red blood cells contain a molecule called hemoglobin, which acquires oxygen from the lungs and distributes it to cells throughout the body. Their plan is to make an artificial hemoglobin-based oxygen carrier (HBOC) that could be used in place of blood.

HBOCs are created using hemoglobin molecules derived from a variety of sources, including expired human blood, human placentas, cow blood, and genetically engineered bacteria. The problem is that free hemoglobin, which exists outside the protective environment of red blood cells, breaks down quickly and is quite toxic. Therefore, HBOCs are not approved for use in most of the world due to their ineffectiveness and toxicity.

The active group in hemoglobin that binds to oxygen is called heme, which can actually be quite toxic. Scientists have found a variety of ways to modify hemoglobin to increase its stability but safety issues still remain. If the hemoglobin’s processing system is overwhelmed, a person may develop jaundice, which causes the skin and whites of the eyes to turn yellow. Too much free hemoglobin can also cause serious liver and kidney damage. When free hemoglobins, not whole red blood cells, are infused, the human body’s natural system for dealing and disposing of this molecule is overwhelmed, leading to toxicity. That is why blood substitutes consisting of free hemoglobin have been plagued with problems, such as an increase in deaths and heart attacks.

But scientists involved in this latest effort to produce a blood substitute have been reengineering the hemoglobin molecule. They are introducing specific amino acids, which are the building blocks of proteins, into hemoglobin in an effort to detoxify it. Preliminary results indicate that this approach may work. They have already created some hemoglobin molecules that are much less reactive and are predicted to be less toxic when used in animals or people.

If successful, this HBOC would be a universal product, meaning it could be used on everyone and there would be no need to waste time on testing for blood types. It would also be sterile, free of any of the infectious agents that donated blood must be tested for. Instead of refrigeration, it could have a long shelf life at room temperature, perhaps years, so it could be stockpiled in case of major emergencies. It could even be kept on board ambulances and at remote locations far from hospitals. The search for an effective and nontoxic blood substitute is one the medical field’s Holy Grails, and if proven successful, these scientists may have finally found it.

For a link to this story, click here.

Cancer Goggles

June 6, 2014

By Medical Discovery News

Cutting people open and sewing them back up for a living is a pretty stressful occupation to begin with, but some surgeons have tougher jobs than others. Cancer surgeons are charged with removing all tumor cells on the first try. But tumor growth can be irregular and it can be hard to distinguish cancer cells from normal cells during an operation. Imaging techniques like MRIs and CT scans can give surgeons a road map to the tumor, but they offer only limited help once an incision has been made.

This is because these images are merely snapshots – a single frame and dimension. Even three-dimensional images can only be viewed one frame at a time. In addition, the inside of the body is dynamic and it takes a skilled surgeon to understand the orientation of tissues and the precise margins where tumor tissue ends and regular tissue begins. 

Because of this challenge, surgeons often have to remove healthy tissue to be sure all tumor cells are gone. This requires a special step: staining the removed tissue then looking at it under a microscope to identify the cells. The surgeon wants to be sure a margin of healthy tissue is removed so no tumor cells remain.

If tumor cells remain, they will grow and second operation may be necessary to remove more cancerous tissue. Again, the removal of additional healthy tissue will be necessary. But what if a surgeon could distinguish cancer cells from normal cells during surgery? It seems impossible. Each cell is microscopic, thousandths of a millimeter. Just observing cells takes special staining and high-powered optics.

But scientists at the University of Missouri and Washington University in St. Louis are working on the impossible. They are developing cancer goggles that will allow surgeons see tumor cells right in the operating room. This new technology uses LS301, a fluorescent dye combined with a short chain of amino acids called peptide, that is only absorbed by cancer cells and glows under infrared light. This dye specifically stains cells from prostrate, colon, breast, and liver cancers among others. Patients can be injected with the dye beforehand and it will last through a procedure.

These special goggles will illuminate cancer cells with LS301 using an infrared light source. A surgeon can distinguish glowing cancer cells from normal cells and observe when they are completely removed. As a result, the surgeon would not need to remove a margin of healthy tissue to be sure all cancerous tissue is gone. This may greatly improve success rates from surgeries to remove cancerous growths. 

Currently, this technique is being perfected in veterinary surgeries to guide the removal of tumors in pets and is not yet ready for use with humans. If effective, it will be a great resource for patients undergoing tumor removal surgery in the future.

For a link to this story, click here.