By Medical Discovery News
May 29, 2015
One of the things that make cancer cells so deadly is metastasis, their ability to dislodge from their original location and migrate to other tissues. Most people who die of cancer are victims of this process. Even if a tumor is removed surgically, doctors can’t be certain that some of the tumor cells haven’t already metastasized, hence the need for treatments such as chemotherapy to target those cells. Unsurprisingly, metastasis is a subject of intense research, and luckily scientists now have a new tool to help them understand how tumor cells move.
While most tumors have the ability to metastasize to many different tissues, they prefer to spread to certain ones, like those in the bones, liver, and lungs. Cancer begins to spread by invading nearby tissue, then through a process called intravasation, tumor cells enter a blood or lymphatic vessel, allowing them to circulate to other parts of the body.
When tumor cells stop moving in a tiny blood vessel called a capillary, the can move out of the blood vessel and into the tissue, which is called extravasation. They will proliferate in this new location and release signals to stimulate the production of new blood vessels to satisfy the oxygen and nutrient demands of the tumor, a process called angiogenesis. Not all cells of the tumor are equally capable of metastasizing, and depending on the new environment they may not be able to grow in their new locations. In general, cells in metastatic tumors acquire additional genetic mutations that make them better able to relocate to other sites in the body. In some cancers, the metastatic cells have evolved to be remarkably different from the original tumor cells, which may contribute to the failure of treatments, the identity of the original cancer, and the recurrence of cancer.
Engineers and scientists at Johns Hopkins University have reproduced the 3-D extracellular matrix (ECM) that surrounds human cells. They also created an artificial blood vessel that runs through the matrix to simulate the flow of blood or lymph. They then added breast cancer cells either individually or in clumps.
Using fluorescent microscopy, they studied how the tumor cells interacted with the model to investigate how tumor cells get into and out of vessels, a key step in metastasis. They found that the tumor cells first dissolved some of the ECM to form a tunnel. The cells moved back and forth within this tunnel, occasionally coming into contact with the vessel. Then the cancer cells attached to the vessel through a long process, finally sitting on the surface of the blood vessel. They appear to change shape and move along the outer surface of the blood vessel. After a few days, the cancer cells force their way between the outer cells of the vessel and are swept away by the fluid moving through it.
About 60-70 percent of cancer patients are already at the stage of metastasis by the time they have been diagnosed. This new device will allow scientists to gain a better understanding of the processes and molecular players in metastasis, which will hopefully lead to new interventions or therapies that could interrupt or prevent this process.
For a link to this story, click here.