Bad News for Smokers

By Medical Discovery News

June 5, 2015

Person smoking a cigarette

Smoking isn’t the only thing that raises your risk of lung cancer. As it turns out, your DNA can have that effect too.

A scientific study scanned the genomes, the entire genetic code, of 11,000 people of European descent in an effort to identify if there was any correlation between gene sequences and a common form of lung cancer, non-small cell carcinoma. They discovered that variants of certain genes increase a person’s susceptibility to developing lung cancer, especially in smokers.

One of the three gene variants they identified, named BRCA2, can double a smoker’s chance for developing lung cancer. BRCA2 is a tumor suppressor gene. It encodes a protein involved in the repair of damaged DNA, which is critical to ensure the stability of cell’s genetic material. When cellular DNA is damaged, there are several ways for the body to detect and repair that damage. If the damage to DNA cannot be repaired, then the cell is programmed to die by a process called apoptosis in order to prevent the damage being passed on to its daughter cells.

Like other tumor suppressor genes, the BRCA2 protein helps to repair breaks in DNA. It also prevents damaged cells from growing and dividing too rapidly. Variants of BRCA2 associated with breast, ovarian, and now lung cancers produce proteins that do not repair DNA damage properly. This causes cells to accumulate additional mutations, which can lead to cells that grow and divide uncontrollably. Such mutations lead to an increased risk of developing cancer.

Scientists have discovered over 800 mutations of BRCA2 that cause disease, including breast, ovarian, lung, prostate, pancreatic, fallopian, and melanoma cancers. Most of the mutations result from the insertion or deletion of a few letters of genetic code into the part of the gene that code for a protein. This disrupts the production of the BRCA2 protein and results in a shortened and nonfunctional form of the BRCA2 protein.

Lung cancer is a leading killer of Americans. Nearly 160,000 Americans will die from lung cancer this year, representing 27 percent of all cancer deaths. Active smoking causes close to 90 percent of lung cancers.

The good news from this discovery is that since scientists first linked BRCA2 to an increased risk of breast cancer, new therapies have been developed. Current treatments for breast and ovarian cancers could be effective with BRCA2-associated lung cancers, such as PARP inhibition.  PARP1 is another protein involved in repairing DNA damage. When one of two strands of DNA are broken or nicked, PARP1 moves to the region and recruits other proteins to the site to repair the damage. Many chemotherapy agents kill cancer cells by inducing DNA damage in the tumor and inhibiting PARP1. This doesn’t allow cancer cells to repair damage and makes them more susceptible to chemotherapy and radiation therapy. Now that we know this gene is linked to lung cancer, such therapies may be more effective in treating lung cancer and saving lives.

For a link to this story, click here.

Quick Diagnosis for Early Treatment

Dec. 12, 2014

By Medical Discovery News

Quick Diagnosis for Early Treatment

The time it takes to test for the cause of an infection ranges from minutes to weeks. A new generation of biosensors may change that, as they are being developed to identify the viral, bacterial, or fungal origin of an illness within a few hours, allowing physicians to begin the correct treatment sooner.

Many infections have symptoms that resemble the flu, such as HIV, the fungal infection coccidioidomycosis, Ebola, and even anthrax. This makes it very difficult to make a diagnosis. The emergence of new microbial pathogens such as SARS and MERS and bacterial resistance to antibiotics only adds to the fight against infectious agents. Scientists like Louis Pasteur and Robert Koch developed the traditional method for diagnosing infectious disease about 150 years ago, and modern methods have improved their discoveries.

Viruses, bacteria, and fungi have genetic information contained in DNA, RNA, or both. Each strand of DNA or RNA is made of four kinds of building blocks called nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T) in DNA or uracil (U) in RNA. Every species has a unique genetic code as seen in its arrangement of nucleotides, and by unlocking that code scientists can determine their identity. Each of the nucleotides has a different molecular weight, so the number of each nucleotide in a strand of DNA or RNA can be determined by measuring it on a device called a mass spectrometer. This can identify a microbial pathogen faster than the traditional culturing method, and can also identify those that can’t be grown in a lab.

However, the massive amount of DNA and RNA in a patient’s own cells complicates things. To tackle this problem, inventors of the new biosensor have coupled a mass spectrometer with polymerase chain reaction (PCR) to amplify any piece of genetic information that matches a known sequence from a pathogen. The sensor can then detect a very broad array of potential pathogens simultaneously.

Scientists have been very careful in selecting the unique genetic regions of various pathogens for this test. Once the PCR is used to amplify pieces of potential pathogens in the sample, the mass spectrometer spits out a series of numbers that can be cross-referenced to a database of over 1,000 pathogens that cause human disease in just a few hours.

For example, two children were hospitalized with flu-like symptoms in Southern California in 2009. They tested positive for the flu virus, but doctors did not know which strain of the flu they had. The new sensor analyzed their samples and revealed that both children were infected with H1N1, otherwise known as swine flu, which was not circulating at that time. H1N1 became a pandemic strain with cases all around the world.

This new technology represents a universal pathogen detector, capable of identifying the organism responsible for a person’s illness in just a few hours. Networking the detectors between hospitals and health departments would quickly identify outbreaks and possibly save lives.

For a link to this story, click here.