Obesity and Diabetes – Is Your Gut in Control?

Aug. 21, 2015

By Medical Discovery News

Your body is like a forest, providing a home to microscopic flora and fauna. In fact, your body is home to up to 100 times more microbes than your own cells, which make up your microbiome. While we provide them residence, these microbes help us out by providing a first line of defense against disease trying to invade our bodies, even breaking down food during digestion and producing vitamins. Now, the microbes that live in the digestive tract are helping us understand diabetes better.

According to the Human Microbiome Project sponsored by the National Institutes of Health, the microbiome plays a huge role in human health. When the microbiome is altered or imbalanced, it can cause conditions like obesity, irritable bowel syndrome, skin disease, urogenital infection, allergy, and can even affect emotion and behavior.

Recently, scientists from Israel discovered another surprising effect of the microbiome while investigating the use of artificial sweeteners in relation to glucose intolerance and diabetes. Artificial sweeteners such as saccharin, sucralose, and aspartame are commonly used in weight loss strategies because they do not add calories while still satisfying sweet cravings. However, artificial sweeteners are not always effective in managing weight and glucose, and scientists at the Weizmann Institute of Science may have figured out why.

Through experimentation they observed that adding artificial sweeteners to the diets of mice caused significant metabolic changes, including increasing blood sugar levels more than mice fed regular sugar. It didn’t matter whether the mouse was obese or at a normal weight, they all reacted the same. Dietary changes can alter the populations of bacteria in our guts, so the study addressed whether those changes affected blood glucose levels as well. After being treated with saccharin for nine days, the populations of gut bacteria in the mice shifted dramatically and corresponded with an increase in their glycemic index. Specifically, the bacterial group Bacteroidetes increased while the group Clostridiales decreased. These changes in bacterial populations is associated with obesity in mice and people.

When they administered antibiotics to reverse this and return the bacterial populations to a healthy state, it also countered the effects of saccharin, returning glucose levels to normal. To take it a step further, researchers took feces from saccharin-consuming mice showing glucose intolerance and transplanted them into other mice that had never consumed saccharin. Remarkably, those mice started showing signs of glucose intolerance.

In a study of 400 people, those who consumed artificial sweeteners had a gut microbiome that was vastly different from those who did not. They had a group of people consume high levels of artificial sweeteners for seven days, and like the rats their glucose levels increased and their microbiomes changed.

Overall, these studies show that artificial sweeteners may induce glucose intolerance instead of preventing it due to the intimate connection between the bacteria that live in our digestive systems and our metabolic state. In the future, expect to see diagnostic and therapeutic procedures that utilize our microbial friends.

For a link to this story, click here.

Baby Bacteria

Sept. 26, 2014

By Medical Discovery News

Fetus in utero

While we know for sure that the bacteria living in and on us are key to our own well-being, more evidence suggests that we acquire our microbiomes before we’re even born. While a baby does acquire bacterial flora from its mother as it moves through the birth canal, scientists now think that our symbiotic, life-long relationships with bacteria begin in utero long before birth. They found bacteria living in the placenta, an organ previously thought to be sterile. They also discovered a baby’s bacteria to be similar to the bacterial flora of the mother’s mouth, making oral hygiene during pregnancy extra important.

An experiment in 2008 by Spanish scientists indicated that bacteria are acquired in some way before birth. They inoculated pregnant mice with labeled bacteria, which were then found in the meconium, the first bowel movement after birth. This was true even when the babies had been delivered by C-section. So scientists knew then that bacteria are acquired before birth and even without the birth canal, changing what we thought we knew about the womb.

Since then, scientists at Baylor College of Medicine have been studying the inside of the womb and birth canal in both humans and animals. They discovered that the vaginal microbiome changed during pregnancy, but it did not resemble that of newborns. So where did they get their bacteria from?

Baylor scientists then examined placentas from 320 women immediately after birth. Using DNA sequencing, they identified the individual types of bacteria each placenta contained. Comparing them to bacteria growing in and on the mothers, they found that the types of bacteria living in the mothers’ mouths most closely resembled those in their own placentas. Interestingly, the bacteria in the placenta consisted of high proportions of bacteria responsible for synthesizing vitamins and other nutrients, which probably benefits a developing fetus and newborn. So a fetus is first exposed to bacteria from the placenta, then at birth additional bacteria are introduced, and then again when babies are exposed bacteria on their parent’s skin, in breast milk, and in their environment.

Other studies have shown the influence of the microbiome on a mother and her baby. In one experiment, monkeys who ate a high-fat diet while pregnant and lactating produced babies with different proportions of bacteria in their guts than those of monkeys fed a normal diet. The short- and long-term consequences of abnormal maternal and infant microbiomes are not yet known, but it’s speculated that these changes could influence the metabolism of the infant and the development of metabolic disorders.

Science is increasingly aware of the role and importance the microbiome has in various parts of the body and the part it plays in human health and disease.

For a link to this story, click here.

First in the No. 2 Business

June 13, 2014

By Medical Discovery News

Antibiotic resistance among disease-causing bacteria is a growing and dangerous problem. Bacteria resistant to one or antibiotics, like Staph and Strep, are approaching catastrophic levels. Bacteria so resistant to common antibiotics that few if any drugs are available to treat them have been dubbed superbugs. One widely feared bacterium, called Clostridium difficle or C. diff for short, causes intestinal disease so severe that it can become life-threatening. It kills almost 15,000 Americans every year, mostly the elderly. Super-resistant forms of this microbe are almost impossible to treat with antibiotics. 

This bacterium produces a powerful toxin that destroys intestinal cells and can rupture small blood vessels. It also causes abnormal intestinal behavior, mainly excess water that produces diarrhea. It’s an unpleasant and painful prospect for those infected with C. diff. 

Roughly 5-15 percent of the population carries this bacterium in their digestive system naturally, but it is kept in check by the rest of the bacterial population. But an underlying disease, antibiotics, another infection, or chemotherapy can weaken bacterial systems, allowing C. diff to expand into an infection. And a super-resistant version of C. diff can be a real problem.

As gross as it may sound, fecal transplants are getting lots of attention as an option for C. diff infections. First tried in the late 1950s, the rationale for this approach is that the disease occurs because the bacterial populations are disrupted, so providing a source of normal bacteria restores the ecology of the intestine and prevents C. diff from growing. 

Where exactly does one find fecal matter for such a transplant? It’s not as if anyone wants to ask family or friends to share their poop. Actually, there are major regulatory obstacles for fecal transplants. For instance, the fecal source must test negative for disease-causing bacteria, viruses, and parasites. Basically, it’s not something anyone can find at Whole Foods or on Amazon.

So a group of enterprising graduate students at the Massachusetts Institute of Technology (MIT) who observed a friend’s struggle with C. diff formed a company to distribute safe, certified fecal matter for transplant. OpenBiome collects, tests, and distributes fecal matter like a blood bank distributes blood. Samples are certified by Food and Drug Administration (FDA) procedures, which cost about $3,000. Then they are frozen at super-cold temperatures (-112 degrees) and shipped to hospitals and physicians. Currently, the company operates as a nonprofit and only collects a shipping and processing fee for transplant material.

We already know that our normal bacterial systems, which together make up our microbiome, help protect us from skin, urogenital, and oral diseases. Changes in our microbiome may also contribute to an underlying disease like diabetes. There is still much to be discovered about these organisms that call our bodies home, especially since we house 10 times more microbes than our own cells!

For a link to this story, click here.

Putting Your Bacteria to Work

April 4, 2014

By Medical Discovery News

A biotech startup company called uBiome has adopted the concept of crowd sourcing, using the Internet to rally people around a cause, for research on the human microbiome. The microbiome is all the microscopic flora and fauna that live in and on the human body. Humans have 10 times as many bacterial cells as human cells. But science is just beginning to understand the populations of the microbiome and how they affect a person’s health for good or bad.

What science already knows about the microbiome comes from the $173 million government-funded Human Microbiome Project (HMP). This project took five years and collected and sequenced the microbiome of 250 healthy people. It proved there are at least 1,000 different types of bacteria present on every person. The National Institutes of Health (NIH) has made the four terabytes of data from this project available to all researchers via the Microbiome Cloud Project.

Different anatomical sites of the body have different microbial populations. Additionally, the microbial populations that inhabit our bodies vary from person to person, but are very stable within an individual. Each person has their own distinct microbial signature that is unique to them. Most of these microbial species are actually helpful and protect against invading microbes that can cause disease. Some, like certain E. coli in the gut, actually produce essential vitamins that keep us healthy. Alterations in the human microbiome have been associated with diseases like autism, obesity, irritable bowel syndrome, and asthma. In some cases, correcting microbial populations associated with disease states may cure or help manage the disease.

A startup company called uMicrobiome is looking to sequence the microbiomes of at least 1,000 more people from all over the world, and they are trying to find volunteers using crowd sourcing. Anyone interested can go to the company’s Web site (ubiome.com), make a pledge, and request a sampling kit, which contains a swab for gently brushing areas of the ears, mouth, genitalia, or gastrointestinal tract. The swabs are placed into a solution that preserves and stabilizes the bacteria for transport back to the lab.

uMicrobiome examines samples for their 16S RNA sequences. These sequences are present in all microbes, but part of the sequence is unique to each different bacterium. This technology of DNA sequencing can determine the different types of bacteria present and their proportions in each sample.

The company puts the results on their Web site for individuals to access and analyze their microbiome. There are also software tools to help users interpret what they are seeing. uMicrobiome secures the data so that it cannot released in an identifiable form. A person can choose to share their data with other citizen scientists for scientific studies or compare their microbiome to others’.

So science to the citizens has arrived! Anyone can learn about their own microbial world and advance this field of science as well. 

For a link to this story, click here. 

The Virus in Your Mucus

Dec. 6, 2013

By Medical Discovery News

Though it has a reputation as slimy and gross, mucus is one of the most valuable lines of defense against the bacteria people are exposed to every day of their lives. It exists not only in a person’s nose, but their respiratory, digestive, urogenital, visual, and auditory systems. Now science shows it contains viruses called bacteriophage (phage for short) that attack and kill bacteria.

A virus is a tiny, infectious agent that is made of a protein coating and a core of genetic information. Although viruses can carry genetic information, undergo mutations, and reproduce, they cannot metabolize on their own and thus are not considered alive. Viruses are classified by the type of genetic information they contain and the shape of their protein capsule. There are viruses that infect every living thing on earth. There are even viruses that infect other viruses. Certain viruses that can infect bacteria have been found in mucus.

A healthy adult produces about one to one and one half liters of mucus per day. Mucus consists of water, salts, antibodies, enzymes, and a family of proteins called mucins. Different mucins are responsible for signaling between cells, forming a chemical barrier for protection, and working with the immune system.

Scientists know that wherever bacteria live, there are also phage viruses that infect them. Areas with mucus have 40 phage for every bacterium, while that ratio is only five to one in areas without mucus. To discover what these phage are doing in the mucus, scientists grew two types of lung tissue in the lab: one that produces mucus and one that cannot. When both lung cultures were exposed to the bacteria E. coli, about half the lung cells died. However, when phage that kill the bacteria were added, the lung cells in the presence of mucus survived. This suggests that the combination of phage and mucus can efficiently kill potentially harmful bacteria. 

The researchers also discovered that the outside of phage is studded with antibody-like proteins that attach the phage to the carbohydrates in the mucus. This would help keep the phage where the bacteria are likely to be. The host may use this system to select which phage are localized to the mucus layers and which can be washed away, explaining why beneficial bacteria are not harmed by phage. An important implication of this system is that it controls the microbial populations in the digestive tract, which play a role in obesity, diabetes, and inflammatory bowel disease.

It all started with investigating how phage actually work in the body, and uncovered the revelation that there are in fact beneficial viruses. In the future, this research could be the foundation for designing phage that reside in mucus and combat specific bacteria, or even change the body’s microbiome. 

For a link to this story, click here.